S0049-3848(14)00284-9

Original Article

Role of Rhizobium on Growth and Development of Groundnut: A Review

Year: 2021 | Month: March | Volume 14 | Issue 1

References (102)

1.Adissie, S., Adgo, E. and Feyisa, T. 2020. Effect of rhizobial inoculants and micronutrients on yield and yield components of faba bean (Vicia faba L.) on vertisol of Wereillu district, South Wollo, Ethiopia, Cogent Food & Agriculture, 6(1): 1747854.

View at Google Scholar

2.Agricultural statistics at a glance 2019 (2020) Directorate of Economics & Statistics, Government of India. https:// eands.dacnet.nic.in/PDF/At%20a%20Glance%202019%20 Eng.pdf (Accessed on 15 March 2021)

View at Google Scholar

3.Arya, S.S., Salve, A.R. and Chauhan, S. 2016. Peanuts as functional food: a review. J. Food Sci. Technol., 53(1): 31–41.

View at Google Scholar

4.Ashraf, M., Ahmad, M. and Bakush, H.M. 2006. Efficacy of rhizobium strains for groundnut inoculation under rain fed conditions. Pak. J. Agri. Sci., 43(3-4): 122-125.

View at Google Scholar

5.Badawi, F.S.F., Biomy, A.M.M. and Desoky, A.H. 2011. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Ann. Agric. Sci., 56: 17–25.

View at Google Scholar

6.Baishya, L.K., Ansari, M.A., Singh, R., Deka, B.C., Prakash, N. and Ngachan, S.V. 2014. Response of groundnut (Arachis hypogaea) cultivars to integrated nutrient management on productivity, profitability and nutrient uptake in NEH Region. Indian J. Agric. Sci., 84(5): 612–615.

View at Google Scholar

7.Baldwin, I.L. and Fred, E.B. 1929. Nomenclature of the root nodule bacteria of the Leguminosae. J. Bacteriol., 17: 141–150.

View at Google Scholar

8.Baldwin, I.L. and Fred, E.B. 1929. Nomenclature of the root nodule bacteria of the Leguminosae. J. Bacteriol., 17: 141–150.

View at Google Scholar

9.Beck, D.P. and Munns, D.N. 1985. Effect of calcium on the phosphorus nutrition of Rhizobium meliloti. Soil Sci. Soc. Am. J., 49: 334–337.

View at Google Scholar

10.Beijerinck, M.W. 1888. Cultur des Bacillus radicicola aus den Kno¨llchen. Bot. Ztg., 46: 740–750.

View at Google Scholar

11.Bhattacharyya, P.N. and Jha, D.K. 2012. Plant growth promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol., 28: 1327–1350.

View at Google Scholar

12.Boussingault, J. 1838. Recherches chimiques sur la vegetation enterprises dans le but d’examinersi les plantes prennent de I’atmosphere. Ann. Chim. Phys., 67: 1–54.

View at Google Scholar

13.Chen, Q., Zhang, X., Terefework, Z., Kaijalainen, S., Li, D. and Lindström, K. 2003. Diversity and compatibility of peanut (Arachis hypogaea L.) bradyrhizobia and their host plants. Plant Soil, 255: 605–617.

View at Google Scholar

14.Chetti, M.B., Antony, E., Mummigatti, U.V. and Dodamani, M.B. 1995. Role of nitrogen and Rhizobium on nitrogen utilization efficiency and productivity potential in groundnut genotypes. Farming Systems, 11(1-2): 209-216.

View at Google Scholar

15.Dardanelli, M.S., González, P.S., Medeot, D.B., Natalia, S.P., Miguel, A.B. and Mirta, B.G. 2009. Effects of peanut rhizobia on the growth and symbiotic performance of Arachis hypogaea under abiotic stress. Symbiosis, 47: 175–180.

View at Google Scholar

16.Datta, A., Singh, R.K., Kumar, S. and Kumar, S. 2015. An Effective and Beneficial Plant Growth Promoting Soil Bacterium“Rhizobium”: A Review. Ann. Plant Sci., 4(01): 933-942.

View at Google Scholar

17.Dey, R. and Pal, K.K. 2014. Biofertilizers for enhancing groundnut productivity. ICAR-Directorate of Groundnut Research, Ivnagar Road, PB No. 5, Junagadh, Gujarat, India, pp. 30.

View at Google Scholar

18.Didagbé, O.Y., Houngnandan, P., Sina, H., Zoundji, C.C., Kouelo, F.A., Lakou, J., Toukourou, F., Baba-Moussa, L. 2014. Response of groundnut (Arachis hypogaea L.) to exogenous Bradyrhizobium sp strains inoculation and phosphorus supply in two agro-ecological zones of Benin, West Africa. J. Exp. Biol. Agric. Sci., 2(6): 623-633.

View at Google Scholar

19.El-Akhal, M.R., Rincón, A., Arenal, F., Lucas, M.M., ElMourabit, N., Barrijal, S. and Pueyo, J.J. 2008. Genetic diversity and symbiotic efficiency of rhizobial isolates obtained from nodules of Arachis hypogaea in northwestern Morocco. Soil Biol. Biochem., 40: 2911–2914.

View at Google Scholar

20.FAOSTAT. 2021. Crop Statistics. http://www.fao.org/faostat/ en/#data/QC. Accessed on 15 March 2021.

View at Google Scholar

21.Fixen, P.E. 2005. Understanding and improving nutrient use efficiency as an application of information technology. In: Proceedings of the Symposium on Information Technology in Soil Fertility and Fertilizer Management, a satellite symposium at the XV International Plant Nutrient Colloquium, Sep. 14-16, 2005. Beijing, China.

View at Google Scholar

22.Fletcher, S.M., Zhang, P. and Carley, D. 1992. Groundnuts: Production, Utilization and trade in the 1980s.

View at Google Scholar

23.Frank, B. 1889. Ueber die Pilzsymbiose der Leguminosen. Ber Deut Bot Ges., 7: 332–346.

View at Google Scholar

24.Fred, E.B., Baldwin, I.L. and McCoy, E. 1932. Root nodule bacteria and leguminous plants, University of Wisconsin Studies in Science No.5. University of Wisconsin, Madison.

View at Google Scholar

25.Fuchsius, L. 1542. De historia stirpium commentarii isignes. Michael Isingrin, Basel.

View at Google Scholar

26.Fuentes-Ramirez, L.E. and Caballero-Mellado, J. 2005. Bacterial Biofertilizers. In PGPR: Biocontrol and Biofertilization; Springer: Berlin/Heidelberg, Germany

View at Google Scholar

27.Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M. and Toulmin, C. 2010. Food Security: The Challenge of Feeding 9 Billion People. Science, 327: 812–818.

View at Google Scholar

28.Gomoung, D., Mbailao, M., Toukam, S.T. and Ngakou, A. 2017. Influence of Cross-Inoculation on Groundnut and Bambara Groundnut-Rhizobium Symbiosis: Contribution to Plant Growth and Yield in the Field at Sarh (Chad) and Ngaoundere (Cameroon). Am. J. Plant Sci., 8: 1953-1966.

View at Google Scholar

29.Gray, E.J. and Smith, D.L. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant bacterium signaling process. Soil Biol. Biochem., 37: 395–412.

View at Google Scholar

30.Gunri, S.K., Biswas, T., Mandal, G.S., Nath, R. and Kundu, C.K. 2014. Effect of biofertilizer on productivity of groundnut (Arachis hypogaea L.) in red and laterite zone of West Bengal. Karnataka J. Agric. Sci., 27(2): 230-231.

View at Google Scholar

31.Gupta, R.K., Kaushik, S., Sharma, P. and Jain, V.K. 2003. Biofertilizers: An eco-friendly alternative to chemical fertilizers. Environmental Challenges of the 21st Century, APH Publishing Corporation, New Delhi, pp. 275-287.

View at Google Scholar

32.Hellriegel, H. and Wilfarth, H. 1888. Untersuchungen u¨ ber die Stickstoffnahrung der Gramineon und Leguminosen. Beilageheft zu der Ztschr. Ver. Ru¨ benzucker-Industrie Deutschen Reichs.

View at Google Scholar

33.Hiltner, L. 1904. Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter bessonderer Beru¨cksichtigung der Gru¨ndung und Brache. Arb Dtsch Landwirtsch Ges Berl., 98: 59–78.

View at Google Scholar

34.Hirsch, A.M., Lum, M.R. and Downie, J.A. 2001. What Makes the Rhizobia-Legume Symbiosis So Special? Plant Physiol., 127(4): 1484-1492.

View at Google Scholar

35.ICAR. 2009. Hand book of agriculture, 6th edition, New Delhi, India.

View at Google Scholar

36.ICAR-Directorate of Groundnut Research (DGR), Gujarat 2015. Vision-2050. http://www.dgr.org.in/wp-content/uploads/2019/06/VISION-2050.pdf (Accessed on 15th March 2021)

View at Google Scholar

37.IISD. 2020. News. https://sdg.iisd.org/news/world-populationto-reach-9-9-billion-by-2050/. Accessed on 15 March 2021

View at Google Scholar

38.Israel, D.W. 1987. Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol., 84: 835–840.

View at Google Scholar

39.Jewell, M.C., Campbell, B.C. and Godwin, I.D. 2010. Transgenic Plants for Abiotic Stress Resistance. In Transgenic Crop Plants; Springer: Berlin/Heidelberg, Germany

View at Google Scholar

40.Kamdi, T.S., Sonkamble, P. and Joshi, S. 2014. Effect of organic manure and biofertilizers on seed quality of groundnut (Arachis hypogaea L.). The Bioscan., 9(3): 1011-1013.

View at Google Scholar

41.Khaitov, B., Kurbonov, A., Abdiev, A. and Adilov, M. 2016. Effect of chickpea in association with Rhizobium to crop productivity and soil fertility. Eurasian J. Soil Sci., 5(2): 105 – 112.

View at Google Scholar

42.Khalid, R., Zhang, Y.J., Ali, S., Sui, X.H., Zhang, X.X., Amara U., Chen, W.X. and Hayat, R. 2015. Rhizobium pakistanensis sp. nov., isolated from groundnut (Arachis hypogaea) nodules grown in rainfed Pothwar, Pakistan. Antonie Van Leeuwenhoek, 107: 281–290.

View at Google Scholar

43.Kloepper, J.W. and Schroth, M.N. 1978. Plant growth promoting rhizobacteria on radishes. In: Proceedings of the IVth international conference on plant pathogenic bacteria, Station de Pathologie Vegetale et Phyto-Bacteriologie, Angers, 2: 879–882.

View at Google Scholar

44.Kumar, A., Maurya, B.R., Raghuwanshi, R., Meena, V.S. and Tofazzal, I.M. 2017. Co-inoculation with enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum Aestivum L.) in the alluvial soil under IndoGangetic plain of India. J. Plant Growth Regul., 36: 608–617.

View at Google Scholar

45.Kumar, S.R.A. and Suganya, A. 2017. Potential for Plant Growth Promotion in Groundnut (Arachis hypogaea L.) by Inoculation of Native Rhizobium Strains. Int. J. Sci. Res., 6(4): 2069-2072.

View at Google Scholar

46.Kumawat, K., Patel, P.P., Dambiwal, D., Reddy, T.V., Chouthu, Ram Hakla C.P. 2017. Effect of liquid and solid biofertilizers (Rhizobium and PSB) on growth attributes, yield and economics of fenugreek (Trigonella foenum-graecum L.). Int. J. Chem. Stud., 5(4): 239-242.

View at Google Scholar

47.Lachmann, J. 1858. Über knollen an den wurzeln der leguminosen (About bulbous roots of the legume). Landwirthschaftliche Mitteilungen. Z Koniglichen.

View at Google Scholar

48.Laxminarayana, K. Patsram. 2005. Influence of inorganic, biological and organic manures on yield and nutrient uptake of groundnut (Arachis hypogaea) and soil properties. Indian J. Agric. Sci., 75(4): 218-221.

View at Google Scholar

49.Löhis, F. and Hansen, R. 1921. Nodulating bacteria of leguminous plant. J. Agric. Res., 20: 543–556.

View at Google Scholar

50.Madhusudhana, B. 2013. A Survey on Area, Production and Productivity of Groundnut Crop in India. J. Financ Econ., 1(3): 2321-5925.

View at Google Scholar

51.Mahato, S. and Kafle, A. 2018. Comparative study of Azotobacter with or without other fertilizers on growth and yield of wheat in Western hills of Nepal. Ann. Agrar. Sci., 16: 250-256.

View at Google Scholar

52.Mahdi, A.A. and Atabani, I.M.A. 1992. Response of Bradyrhizobium inoculated soybean and lablab bean to inoculation with vesicular mycorrhizae. Exp. Agric., 28: 399-407.

View at Google Scholar

53.Maitra, S. and Ray, D.P. 2019. Enrichment of Biodiversity, Influence in Microbial Population Dynamics of Soil and Nutrient Utilization in Cereal-Legume Intercropping Systems: A Review. Int. J. Bioresource Sci., 6(1): 11-19.

View at Google Scholar

54.Maitra, S., Shankar, T., Gaikwad, D.J., Palai, J.B. and Sagar, L. 2020. Organic Agriculture, Ecosystem Services and Sustainability: A Review. Int. J. Mod. Agric., 9(4): 370-378.

View at Google Scholar

55.Maitra, S., Zaman, A., Mandal, T.K. and Palai, J.B. 2018. Green manures in agriculture: A review. J. Pharmacogn. Phytochem., 7(5): 1319-1327.

View at Google Scholar

56.Malpighi, H. 1679. Anatome plantarum. J Martyn London.

View at Google Scholar

57.Marschner, H. 1995. Mineral nutrition of higher plants, 2nd edn. Academic, London

View at Google Scholar

58.Meena, V.S., Meena, S.K., Verma, J.P., Kumar, A., Aeron, A., Mishra, P.K., Bisht, J.K., Pattanayak, A., Naveed, M. and Dotaniya, M.L. 2017. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecol. Eng., 107: 8–32.

View at Google Scholar

59.Michael, A., Ahiabor, B.D.K. and Atakora, W.K. 2020. Growth, Nodulation, and Yield Responses of Groundnut (Arachis hypogaea L.) as Influenced by Combined Application of Rhizobium Inoculant and Phosphorus in the Guinea Savanna Zone of Ghana. Int. J. Agron., pp. 1–7.

View at Google Scholar

60.Nagaraj, R., Hanumanthappa, M. and Kamath, S. 2018. Growth parameters and yield of groundnut as influenced by integrated nutrient management at coastal zone of Karnataka. J. Pharmacogn. Phytochem., 7(5): 2725-2729.

View at Google Scholar

61.Nath, D., Maurya, B.R. and Meena, V.S. 2017. Documentation of five potassium- and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal Agric. Biotechnol., 10: 174–181.

View at Google Scholar

62.Nobbe, F. and Hiltner, L. 1896. Inoculation of the soil for cultivating leguminous plants. U.S. Patent 570 813.

View at Google Scholar

63.Ojiewo, C., Janila, P., Bhatnagar-Mathur, P., Pandey, M.K., Desmae, H., Okori, P., Mwololo, J., Ajeigbe, H., NjugunaMungai, E. and Muricho, G. 2020. Advances in crop improvement and delivery research for nutritional quality and health benefits of groundnut (Arachis hypogaea L.). Front Plant Sci., 11: 1–15.

View at Google Scholar

64.Patel, A.M., Patel, P.K., Saini, A.K. and Patel, K.M. 2018. Organic nutrient management packages of green manuring potato groundnut sequence. Int. J. Agric. Sci., 10(10): 6025-6027.

View at Google Scholar

65.Pitumpe, A.P.S., Rosso, L.H.M. and Hansel, F.D. 2020. Temporal biological nitrogen fixation pattern in soybean inoculated with Bradyrhizobium. Agrosyst. Geosci. Environ., 3(1): 1-10.

View at Google Scholar

66.Premaratne, K.P. and Oertli, J.J. 1994. The influence of potassium supply on nodulation, nitrogenase activity and nitrogen accumulation of soybean (Glycine max L. Merrill) grown in nutrient solution. Ferti. Res., 38(2): 95–99

View at Google Scholar

67.Qiao, Y.J., Li, Z.Z., Wang, X., Zhu, B., Hu, Y.G. and Zeng, Z.H. 2012. Effect of legume-cereal mixtures on the diversity of bacterial communities in the rhizosphere. Plant Soil Environ., 58(4): 174–180.

View at Google Scholar

68.Rafi, M.M.D., Varalakshmi, T. and Charyulu, P.B.B.N. 2012. Influence of Azospirillum and PSB inoculation on growth and yield of Foxtail Millet. J. Microbiol. Biotechnol., 2(4): 558-565.

View at Google Scholar

69.Rajgopal, K.K., Chandan, J.B., Mishra, P.K., Bhaodia, Mathur, R.S. 2000. Evaluation of bold seed nut groundnut accessions for confectionery attributes. IAN 20: 18-19.

View at Google Scholar

70.Ramakrishna, K., Devi, S., Sailaja, K.B. and Saritha, J.D. 2017. Nutrient use efficiency of groundnut with organic manures. Environ. Conserv. J., 18(3): 1-8.

View at Google Scholar

71.Ramya, P., Maitra, S., Shankar, T., Adhikary, R. and Palai, J.B. 2020. Growth and Productivity of Finger Millet (Eleusine coracana L. Gaertn) as Influenced by Integrated Nutrient Management. Agric Econ., 7(2): 17-24 (Special Issue).

View at Google Scholar

72.Reddy, T.Y. and Reddy, G.S. 2016. Principles of agronomy, 5th edition. New Delhi, India

View at Google Scholar

73.Rodelas, R., González-López, J., Martínez-Toledo, M.V., Pozo, C. and Salmerón, V. 1999. Influence of Rhizobium/ Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.). Biol. Ferti. Soils, 29: 165–169.

View at Google Scholar

74.Roriz, M., Carvalho, S.M.P., Castro, P.M.L. and Vasconcelos, M.W. 2020. Legume biofortification and the role of plant growth-promoting bacteria in a sustainable agricultural era. Agronomy, 10(3): 1-13.

View at Google Scholar

75.Rosália, C.E., Santos, S., Stamford, N.P., Freitas, A.D.S., Vieira, I.M.D.M.B., Souto, S.M., Neves, M.C.P. and Rumjanek, N.G. 2005. Efetividade de rizóbios isolados de solos da região Nordeste do Brasil na fixação do N2 em amendoim (Arachis hypogaea L.). Acta Scientiarum Agron., 27: 301–307.

View at Google Scholar

76.Sajid, M., Rab, A., Fazal-I-Wahid, Shah, S.N.M., Jan, I., Khan, M.A., Hussain, S.A., Khan, M.A. and Iqbal, Z. 2011. Influence of rhizobium inoculation on growth and yield of groundnut cultivars. Sarhad J. Agric., 27(4): 573-576.

View at Google Scholar

77.Sandhya, V., Ali, S.Z. and Grover, M. 2010. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul., 62: 21–30.

View at Google Scholar

78.Sene, G., Thiao, M., Mbaye, R.S., Ndoye, F., Kane, A., Diouf, D. and Sylla, S.N. 2010. Response of three peanut cultivars toward inoculation.

View at Google Scholar

79.Sharma, P., Kumawat, K.C. and Kaur, S. 2016. Plant Growth Promoting Rhizobacteria in Nutrient Enrichment: Current Perspectives. In: Singh U, Praharaj C, Singh S, Singh N (eds) Biofortification of Food Crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2716-8_20

View at Google Scholar

80.Singh, A.L. 1999. Mineral Nutrition of Groundnut. In Advances in Plant Physiology (Ed. A. Hemantranjan), Vol II pp. 161-200. Scientific Publishers (India), Jodhpur, India.

View at Google Scholar

81.Singh, A.L., Ghosh, P.K. and Dayal, D. 1997. Nutrient management in groundnut and groundnut based cropping systems. In: Ghonsikar CP, Shinde VS (Eds) Nutrient Management Practices in crops and cropping Systems, India

View at Google Scholar

82.Singh, B. and Singh, Y. 2002. Concepts in nutrient management. In: Recent Advances in Agronomy. Indian Soc Agron, New Delhi, 92-109.

View at Google Scholar

83.Singh, G.P., Singh, P.L. and Panwar, A.S. 2013. Seed yield, quality and nutrient uptake of groundnut (Arachis hypogaea) as affected by integrated nutrient management in mid hill altitude of Meghalaya, India. Legum. Res., 36(2): 147-152.

View at Google Scholar

84.Singleton, P., Keyser, H. and Sande, E. 2002. Development and evaluation of liquid inoculants. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam, ACIAR Proceedings, Canberra, 109: 52–66.

View at Google Scholar

85.Somers, E., Vanderleyden, J. and Srinivasan, M. 2004. Rhizosphere bacterial signalling: a love parade beneath our feet. Crit. Rev. Microbiol., 30: 205–240.

View at Google Scholar

86.Spehn, E.M., Joshi, J., Schmid, B., Alphei, J. and Korner, C. 2000. Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil, 224: 217–230.

View at Google Scholar

87.Swarnalakshmi, K., Yadav, V., Tyagi, D., Dhar, D.W., Kannepalli, A. and Kumar, S. 2020. Significance of plant growth promoting rhizobacteria in grain legumes: growth promotion and crop production. Plants, 9: 1596.

View at Google Scholar

88.Tandon, H.L.S. 1991. Sulphur Research and Agriculture Production. FDCO, 3rd edition, New Delhi, India.

View at Google Scholar

89.Tang, C., Barton, L. and Raphael, C. 1998. Pasture legume species differ in their capacity to acidify soil. Aust. J. Agric. Res., 49(1): 53–58.

View at Google Scholar

90.Tarimo, A.J.P. 1997. Physiological response of groundnut to plant population density. African Crop Sci. J., 5(3): 267-272.

View at Google Scholar

91.Thomas, R.J. and Hungria, M. 1988. Effect of potassium on nitrogen fixation, nitrogen transport, and nitrogen harvest index of bean. J. Plant Nutr., 11(2):175-188.

View at Google Scholar

92.Tilak, K.V.B.R., Ranganayaki, N. and Manoharachari, C. 2006. Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur. J. Soil Sci., 57: 67–71.

View at Google Scholar

93.Vala, F.G., Vaghasia, P.M., Zala, K.P. and Akhatar, N. 2018. Response of Integrated Nutrient Management on Nutrient Uptake, Economics and Nutrient Status of Soil in Bold Seeded Summer Groundnut. Int. J. Curr. Microbiol. App. Sci., 7(1): 174-180.

View at Google Scholar

94.Van Rossum, D., Muyotcha, A., De Hope, B.M., Van Verseveld, H.W., Stouthamer, A.H. and Boogerd, F.C. 1994. Soil acidity in relation to groundnut-Bradyrhizobium symbiotic performance. Plant Soil, 163: 165–175.

View at Google Scholar

95.Van Schreven, D.A., Harmsen, G.W. and Lindenbergh, D.T. 1953. Experiments on the cultivation of Rhizobium in liquid media for use on zindderzee polders. Antonie van Leeuwenhoek, 19: 300–308.

View at Google Scholar

96.Venkateswarlu, B., Maheswari, M. and Karan, N.S. 1989. Effects of water deficits on N2 (C2 H2 ) fixation in cowpea and groundnut. Plant Soil, 114: 69–74.

View at Google Scholar

97.Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255: 571–586

View at Google Scholar

98.Woronin, M.S. 1866. Uber die bei der Schwarzerle (Alnus glutinosa) und bei der gewo¨hnlichen Gartenlupine (Lupinus mutabilis) auftretenden Wurzelanschwellungen. Me’moires del’Academie Impe’riale des Sciences de St. Pe’tersbourg, VII Series, vol. X

View at Google Scholar

99.Yang, J.K., Xie, F.L., Zou, J., Zhou, Q. and Zhou, J.C. 2005. Polyphasic characteristics of bradyrhizobia isolated from nodules of peanut (Arachis hypogaea) in China. Soil Biol. Biochem., 37: 141–153.

View at Google Scholar

100.Yusif, S.A., Muhammad, I., Hayatu, N.G., Sauwa, M.M., Tafinta, I.Y., Mohammed, M.A., Lukman, S.A., Abubakar, G.A. and Hussain, A.M. 2016. Effects of Biochar and Rhizobium Inoculation on Nodulation and Growth of Groundnut in Sokoto State, Nigeria. Appl. Life Sci. Int., 9(2): 1-9.

View at Google Scholar

101.Zahran, H.H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev., 63(4): 968–989.

View at Google Scholar

102.Zhang, X., Nick, G., Kaijalainen, S., Terefework, Z., Paulin, L., Tighe, S.W., Graham, P.H. and Lindström, K. 1999. Phylogeny and diversity of Bradyrhizobium strains isolated from the root nodules of peanut (Arachis hypogaea) in Sichuan, China. Syst. Appl. Microbiol., 22: 378–386.

View at Google Scholar

International Journal of Agriculture Environment & Biotechnology(IJAEB)| In Association with AAEB

27136164 - Visitors since February 20, 2019